13,217 research outputs found

    Liver, biliary tract, and pancreas

    Get PDF

    Sparse bayesian polynomial chaos approximations of elasto-plastic material models

    Get PDF
    In this paper we studied the uncertainty quantification in a functional approximation form of elastoplastic models parameterised by material uncertainties. The problem of estimating the polynomial chaos coefficients is recast in a linear regression form by taking into consideration the possible sparsity of the solution. Departing from the classical optimisation point of view, we take a slightly different path by solving the problem in a Bayesian manner with the help of new spectral based sparse Kalman filter algorithms

    Rethinking one`s own culture

    Get PDF
    African people reflecting on their own situation will frequently find themselves in a dilemma to identify with western and traditional values. A case study of the Burji (Ethiopia and Kenya) examplifies this. First a description is given of the Burji actively dealing with their problems, trying among other things to keep Burjiness alive. Then in presenting a semiotic model it is shown how the phenomenon of their changing group identity (which is not grasped by theories of ethnic group or ethnicity) can be analyzed. The model presented may be useful for analyzing similar cases in the Third World

    Inverse problems and uncertainty quantification

    Get PDF
    In a Bayesian setting, inverse problems and uncertainty quantification (UQ) - the propagation of uncertainty through a computational (forward) model - are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.Comment: 25 pages, 17 figures. arXiv admin note: text overlap with arXiv:1201.404

    Unsolvability Cores in Classification Problems

    Full text link
    Classification problems have been introduced by M. Ziegler as a generalization of promise problems. In this paper we are concerned with solvability and unsolvability questions with respect to a given set or language family, especially with cores of unsolvability. We generalize the results about unsolvability cores in promise problems to classification problems. Our main results are a characterization of unsolvability cores via cohesiveness and existence theorems for such cores in unsolvable classification problems. In contrast to promise problems we have to strengthen the conditions to assert the existence of such cores. In general unsolvable classification problems with more than two components exist, which possess no cores, even if the set family under consideration satisfies the assumptions which are necessary to prove the existence of cores in unsolvable promise problems. But, if one of the components is fixed we can use the results on unsolvability cores in promise problems, to assert the existence of such cores in general. In this case we speak of conditional classification problems and conditional cores. The existence of conditional cores can be related to complexity cores. Using this connection we can prove for language families, that conditional cores with recursive components exist, provided that this family admits an uniform solution for the word problem

    Subleading contributions to the nuclear scalar isoscalar currents

    Full text link
    We extend our recent analyses of the nuclear vector, axial-vector and pseudoscalar currents and derive the leading one-loop corrections to the two-nucleon scalar current operator in the framework of chiral effective field theory using the method of unitary transformation. We also show that the scalar current operators at zero momentum transfer are directly related to the quark mass dependence of the nuclear forces.Comment: 14 pages, 6 figure
    corecore